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Masking a Compact AES S-box

D. Canright
Applied Mathematics Dept., Code MA/Ca

Naval Postgraduate School
Monterey, CA 93943

7 August 2007

Abstract

When the Advanced Encryption Standard (AES) is implemented in hardware or
software, it may be vulnerable to “side-channel attacks” such as differential power
analysis. One countermeasure against such attacks is adding a random mask to the
data; this randomizes the statistics of the calculation at the cost of computing “mask
corrections.” The single nonlinear step in each round of the AES algorithm is called
the “S-box,” which involves the greatest computational cost in a round (to find the
inverse in the Galois field), as well as the greatest cost for mask corrections. Oswald et
al.[9] showed how the “tower field” representation allows maintaining an additive mask
throughout the Galois inverse calculation. This work combines that masking approach
with the compact S-box of Canright, to give a masked S-box that requires minimal
circuitry, and hence the chip area.

1 Introduction

The Advanced Encryption Standard (AES) was specified in 2001 by the National Institute
of Standards and Technology [8], to provide a standard algorithm for secure encryption,
intended not only for U.S. government documents, but also for electronic commerce.

Many different implementations of AES have appeared, to satisfy the varying criteria
of different applications. Some approaches seek to maximize throughput, e.g., [6], [15] and
[5]; others minimize power consumption, e.g., [7]; and yet others minimize circuitry, e.g.,
[12], [13], [16], and [3]. For the latter goal, Rijmen[11] suggested using subfield arithmetic in
the crucial step of computing an inverse in the Galois Field of 256 elements. This idea was
further extended by Satoh et al.[13], using sub-subfields (the “tower field” representation
of Paar[10]), along with other innovative optimizations, which resulted in the smallest AES
circuit at that point. The architecture of Satoh was refined somewhat by Canright[2], mainly
through carefully chosen normal bases, resulting in the most compact S-box to date.

No attacks have yet been found on the AES algorithm itself that are more effective
than exhaustive key search (“brute force”), although research continues, for example, on
algebraic attacks. But hardware implementations of cryptograpy, e.g. in smart cards, may be
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vulnerable to “side-channel attacks” such as differential power analysis, that use statistical
analysis of side effects like power consumption, electromagnetic radiation, etc., to deduce
information about the secret key.

One countermeasure against side-channel attacks is masking the data during calculation
through adding or multiplying by random values. All the steps in a round of AES are affine,
except for the Galois field inversion substep of the S-box (SubBytes) step. For the other
steps, calculation of the mask correction is linear, so an additive mask is most convenient.
Some have suggested switching to a multiplicative mask for the Galois inverse step (e.g., [1]),
but one inescapable weakness is that a zero data byte is unmasked by multiplication [4].

Applying the “tower field” representation, inversion in GF(28) involves several multipli-
cations and one inversion in the subfield GF(24), which in turn involves multiplications and
inversion in GF(22). In the sub-subfield GF(22), inversion is identical to squaring, and so
is linear (over GF(2)). Oswald et al. applied this idea to additive masking of the Galois
inverse, and showed how to compute the mask correction for the tower field approach. Many
of the correction terms involve multiplication in subfields, and Oswald et al. showed how
some of these multiplications can be eliminated through clever re-use of parts of the input
mask for the output.

The present work incorporates this masking approach into the compact S-box of Canright[2].
Applying the same optimizations used there for the unmasked S-box, to the mask correction
terms here, results a compact masked S-box.

2 Algebraic description

The AES algorithm has been described thoroughly and frequently elsewhere[8]; here we
give the barest outline before concentrating on the S-box. It is a symmetric block (16 bytes)
cipher consisting of several rounds (10, 12, or 14, depending on key size). Each round involves
the four steps called SubBytes (byte substitution, or S-box), ShiftRows, MixColumns, and
AddRoundKey (the last round skips MixColumns, and there is a Round 0 consisting solely of
AddRoundKey). The latter three steps are linear with respect to the data block, and provide
“diffusion.” SubBytes is the nonlinear step that provides “confusion.”

The S-box, applied to each byte, consists of two substeps: (i) considering the byte an
element of the Galois field GF(28), find its inverse in that field; (ii) considering the resulting
byte a vector of bits in GF(22), multiply by a given bit matrix and add a given constant
vector, i.e., an affine transformation.

In the particular Galois field of AES, a byte represents a polynomial where the bits
are coefficients of corresponding powers of x, and multiplication is modulo the irreducible
polynomial q(x) = x8 +x4 +x3 +x+1. Equivalently, one could consider a root, say θ, of this
polynomial, so q(θ) = 0 in this field; then the bits of a byte would correspond to coefficients
of powers of θ, e.g., 2 = θ, 3 = θ + 1, 4 = θ2, etc. Thus the bits form a vector with respect to
what is called a polynomial basis. But there are computational advantages to considering
a different (though isomorphic) representation of GF(28). Instead of a vector of dimension
eight over GF(2), we consider a byte as a vector of dimension two over GF(24), where each
4-bit element is in turn a vector of dimension two over GF(22), and finally each 2-bit element
is a vector of dimension two over GF(2). This has been called a composite field, or “tower
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field” representation[10]. In this way, the 8-bit inverse calculation comprises several 4-bit
operations, each consisting of various simple 2-bit calculations. For each of these subfields,
we have found that a normal basis (consisting of a conjugate pair) is more efficient than a
polynomial basis for the required inverse calculation[2].

Converting between the standard AES representation and the composite field represen-
tation amounts to a change of basis, accomplished by multiplying the bit vector by a bit
matrix. In converting back, this bit matrix can be combined with that of the affine trans-
formation substep[13]. With regard to an additive mask, these matrix multiplies are simple
linear calculations for the mask correction terms. Below we detail the mask corrections
required for the nonlinear inverse calculation.

2.1 Inversion without masking

Here we employ the following convention: upper-case bold symbols represent elements of the
main field (e.g. A ∈ GF(28)); upper-case italic symbols are for elements of the subfield (e.g.
A ∈ GF(24)); lower-case bold is used for the sub-subfield (e.g. a ∈ GF(22)); and lower-case
italic is for single bits (e.g. a ∈ GF(2)).

Without masking, inversion in GF(28)/GF(24) using a normal basis [Y16,Y], where Y
and Y16 are the roots of X2 + X + N and N ∈ GF(24) is the norm (product: N = Y17), is
given by:

A = A1 Y16 + A0 Y (given) (1)

B = A1⊗A0 ⊕ N⊗(A1 ⊕ A0)
2 (2)

A−1 =
(
A0⊗B−1

)
Y16 +

(
A1⊗B−1

)
Y (result) (3)

(Note that ⊗ and ⊕ denote multiplication and addition calculations in a Galois field, while
A1 Y16 + A0 Y is just the algebraic expression for the vector [A1, A0] in the normal basis.)
This requires inversion, multiplication, and the combined “square-scale” operation in the
subfield GF(24). Similarly, the inversion in GF(24)/GF(22) using a normal basis [Z4, Z],
where Z and Z4 are the roots of X2 + X +n and n ∈ GF(22) is the norm (n = Z5), is given
by:

B = b1 Z4 + b0 Z (given) (4)

c = b1⊗b0 ⊕ n⊗(b1 ⊕ b0)
2 (5)

B−1 =
(
b0⊗c−1

)
Z4 +

(
b1⊗c−1

)
Z (result) (6)

But in the sub-subfield GF(22), inversion is the same as squaring, equivalent to a bit swap:

c = c1 w2 + c0 w (given) (7)

c−1 = c0 w2 + c1 w (result) (8)

where w and w2 are the roots of x2 + x + 1.

2.2 Masked Inversion

Now introduce additive masking. By adding a “random” mask, such that the statistical
distribution of masks appears uniform over the field, now our operands appear random as
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well, uncorrelated to either plaintext or key. Hence the statistical data available through side
channels looks like noise, regardless of the chosen sets of plaintexts, and the key is protected.
The cost is the computation of mask correction terms.

We use the insight of Oswald et al. that in the sub-subfield GF(22) inversion (squaring)
is additive, so for data a and mask m, then

(a⊕m)−1 = (a⊕m)2 = a2 ⊕m2 = a−1 ⊕m−1 (9)

and finding the mask correction m2 is trivial. Hence the tower-field approach eliminates the
need to remove the additive mask (or change it to a multiplicative one) before inversion.

In the larger fields, here is how the mask corrections can be calculated. We indicate the
masked version of the input byte A with a tilde: Ã, and similarly for the other masked
quantities. So the input byte to the masked GF(28) inverter is

Ã = (A⊕M) = Ã1 Y16 + Ã0 Y , (10)

being the data byte A already masked by the (known) mask M = M1 Y16 + M0 Y. Let

B̃ = Ã1⊗Ã0 ⊕ N⊗
(
Ã1 ⊕ Ã0

)2

(11)

⊕ Ã1⊗M0 ⊕ Ã0⊗M1 ⊕ M1⊗M0 (12)

where the second line shows the additional correction terms required, and the result B̃ is B
above, masked by N⊗(M1 ⊕M0)

2. Note that, since M1 and M0 are random, then so is their
sum, so is its square (an isomorphism), and so is the square scaled by N 6= 0 (a bijection),
that is, the uniform distribution of masks is preserved.

For the subfield inversion, say B̃ = b̃1 Z4 + b̃0 Z, call the mask M2 = N⊗(M1 ⊕M0)
2 =

m1 Z4 + m0 Z, and let

c̃ = b̃1⊗b̃0 ⊕ n⊗
(
b̃1 ⊕ b̃0

)2

(13)

⊕ b̃1⊗m0 ⊕ b̃0⊗m1 ⊕ m1⊗m0 (14)

so c̃ is c above, masked by n⊗(m1 ⊕m0)
2, and again the uniform distribution of masks is

preserved.
In the sub-subfield, say c̃ = c̃1 w2 + c̃0 w, and let

c̃−1 = c̃0 w2 + c̃1 w (bit swap) (15)

so c̃−1 is c−1 above masked by another uniform mask. For later convenience, give this mask
a name: m2 = n2⊗(m1 ⊕m0).

The next steps involve only multiplications, which do not preserve the uniform distri-
bution of masking. Hence (as in Oswald et al.[9]) we need to introduce another additive
mask. This mask could be new, or could be re-used bits from the original mask M. In either
case, this mask must be added first, before all the other mask correction terms are added,
to prevent unmasking the operands.
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Say now we introduce a new temporary 4-bit mask T = t1 Z4 + t0 Z, and let

b̃−1
1 = b̃0⊗c̃−1 (16)

⊕ t1 ⊕ b̃0⊗m2 ⊕ m0⊗c̃−1 ⊕ m0⊗m2 (17)

b̃−1
0 = b̃1⊗c̃−1 (18)

⊕ t0 ⊕ b̃1⊗m2 ⊕ m1⊗c̃−1 ⊕ m1⊗m2 (19)

so that the result B̃−1 = b̃−1
1 Z4 + b̃−1

0 Z is B−1 above, masked by T (but is not the inverse
of B̃).

Similarly, introduce a new 8-bit mask S = S1 Y16 + S0 Y for the output, and let

Ã−1
1 = Ã0⊗B̃−1 (20)

⊕ S1 ⊕ Ã0⊗T ⊕ M0⊗B̃−1 ⊕ M0⊗T (21)

Ã−1
0 = Ã1⊗B̃−1 (22)

⊕ S0 ⊕ Ã1⊗T ⊕ M1⊗B̃−1 ⊕ M1⊗T (23)

so that the result Ã−1 = Ã−1
1 Y16 + Ã−1

0 Y is the answer A−1 above, masked by the output
mask S:

Ã−1 = A−1 ⊕ S (24)

2.3 Re-using Masks

Oswald et al. showed that through using parts of the input mask for the intermediate results
and the output, then several operations can be eliminated, notably multiplications. We will
follow the same strategy below.

The first place where re-using masks helps is in the masked intermediate result c̃−1, where
for one subsequent calculation the mask m1 would be helpful but for another the preferred
mask would be m0, so we follow Oswald and switch masks. Then starting at (15) above we
modify the calculation as follows:

(25)

c̃−1 = c̃0 w2 + c̃1 w (26)

⊕ (m1 ⊕ m2) (27)

b̃−1
1 = b̃0⊗c̃−1 (28)

⊕ m11 ⊕ b̃0⊗m1 ⊕ m0⊗c̃−1 ⊕ m0⊗m1 (29)

c̃−1 = c̃−1 ⊕ (m1 ⊕m0) (30)

b̃−1
0 = b̃1⊗c̃−1 (31)

⊕ m10 ⊕ b̃1⊗m0 ⊕ m1⊗c̃−1 ⊕ m1⊗m0 (32)

where the underlined products had already been computed previously and may be re-used.
(Parens indicate the order of evaluation necessary to avoid unmasking operands, but those
combinations were also available from previous computation.) Note also that the result
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B̃−1 = b̃−1
1 Z4 + b̃−1

0 Z is still B−1 above, but now masked by M1 = m11 Z4 + m10 Z, the
upper half of the input mask. Following the same approach of switching masks at the next
level gives

Ã−1
1 = Ã0⊗B̃−1 (33)

⊕ S1 ⊕ Ã0⊗M1 ⊕ M0⊗B̃−1 ⊕ M0⊗M1 (34)

B̃−1 = B̃−1 ⊕ (M1 ⊕ M0) (35)

Ã−1
0 = Ã1⊗B̃−1 (36)

⊕ S0 ⊕ Ã1⊗M0 ⊕ M1⊗B̃−1 ⊕ M1⊗M0 (37)

again allowing the underlined terms to be re-used, and with the output Ã−1 = Ã−1
1 Y16 +

Ã−1
0 Y being masked by the output mask S (which could be the original intput mask M, or

not):
Ã−1 = A−1 ⊕ S (38)

2.4 Re-using Masks between rounds

Many of the mask correction terms used in the masked inversion above involve only the
input mask, independent of the masked data. This is also true of all the mask correction
term calculations in the other steps of each round of encryption, as those other steps are all
linear (with respect to the additive mask). Then, if the original 128-bit mask for a block of
data were to be re-used for every round, all those data-independent correction terms would
be the same for each round. For implementations where the round loop is “unrolled” with
S-boxes for each round, these terms would only need computing once, then could be passed
along to all the other rounds. This would save the re-computation of all those mask terms,
eliminating the associated circuitry, at the modest cost of the “wiring” required to pass along
the correction terms. Of course, one would use a new random mask with each new block of
data in Round 0, to ensure that over time the distribution of masks remains uniform.

More precisely, one way to do this starts by picking a random 128-bit mask that will
be used as the output mask (whose bytes correspond to S above) from the inversion step.
Then after each byte undergoes the basis change (from the tower field form) and affine
transformation part of the S-box (excluding the additive constant), the ShiftRows step is
applied to the whole mask; the result is the output mask after the last round of encryption
(which lacks the MixCols step). Then MixCols is applied to that, giving the input mask to
be added to the initial data before Round 0. Applying byte-wise the basis change (to the
tower field form) gives the input mask (corresponding to M above) for the inversion step.
From this can be computed such terms as M1⊗M0, M2, m1⊗m0, and m2 above, to be re-used
each round. Then the only correction terms that would need computing in each round are
the data-dependent terms (e.g. Ã1⊗M0 above) of the inversion step.

But this only makes sense if the application has enough room to unroll the loop. In cases
where compactness is paramount the same few S-boxes would be employed for each round;
using pre-computed correction terms from round to round would then require extra registers
– a cost rather than a saving.
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2.5 Security of Masks

Here we show that this masked inversion operation is secure, by which we mean, given input
and output masks uniformly distributed, then the distribution of each masked operand is
independent of the distribution of the data.

First note that, for a variable x ∈ F uniformly distributed in a finite field F, then applying
any bijection (one-to-one, onto mapping from the field to itself) f : F → F will give a new
variable y = f(x) that is also uniformly distributed. In particular, any isomorphism is a
bijection.

Also, for a string of n bits [b1, b2, · · · , bn] uniformly distributed over the set of all 2n

such strings of the same length, then any substring [bi, bi+1, · · · , bj] will also be uniformly
distributed over the set of such strings of the same length.

Now consider the operations we perform with the initial, uniformly distributed masks m.
Adding data a to give masked data ã = a⊕m is a bijection f(m) = m⊕a = ã; regardless of
what the data a is, the masked data ã retains the uniform distribution of the mask. Splitting
a mask into two halves gives two independent masks uniformly distributed over the subfield.
Adding two independent masks results in another uniformly distributed mask. Squaring is
an isomorphism in GF(2n), so squaring a mask gives another uniformly distributed mask.
Similarly to addition, multiplying by a nonzero constant value n 6= 0 is a bijection; here the
constant is the norm of the basis elements and so cannot be zero. So, for example, M2 above,
the mask for B, retains the uniform distribution of M from which it was derived using the
above operations; similarly m2.

Multiplying two independent uniformly distributed variables does not give a uniformly
distributed product. The latter half of the inverse calculation involves only multiplications,
including mask correction terms, so no such term can act as a mask, and adding all such
terms would unmask the operand. (Note that each of these individual products has the same
distribution as the product of two random variables, so is not related to the unmasked data.)
Here, first starting with a new uniformly distributed mask and then adding products to it
will ensure that each intermediate result maintains the uniform distribution of the mask, as
pointed out by [9]. Therefore, the distribution for each intermediate term (either uniform or
product of uniform) is independent of the data, and the calculation is secure.

3 Implementation Details

The appendix gives Verilog code for a masked S-box using the merged architecture of Satoh
et al., which combines the S-box with the inverse S-box (for decryption), sharing the Galois
inverter. The tower field representation here uses the same normal bases used by Canright
in the unmasked version. Here both the input mask and the output mask are parameters,
along with the masked data byte. The code has been tested in an FPGA implementation
and shown to give correct results for every combination of encryption/decryption, data byte,
input mask, and output mask (33,554,432 combinations).

The same types of optimizations for minimal circuitry as used by Canright for the un-
masked S-box were applied to the masked version. Among these optimizations are the re-use
of bit sums for factors in multipliers (using normal bases, all factors are shared between two
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Table 1: Inverter Size. Here we compare the masked inverter with the unmasked version,
where total gates is in NAND equivalents.

Inverter gate counts total gates
masked 217 XOR, 94 NAND, 6 NOR 480

unmasked 56 XOR, 34 NAND, 6 NOR 138

Table 2: Basis Change Sizes. Here we compare gates needed in the basis change bit matrices
(including the affine transformation but excluding the Galois inverter) for a merged S-box &
inverse, S-box alone, and inverse S-box alone, using different input and output masks, same
mask for both, or no mask. Both individual gate counts and NAND equivalents are given.

Basis Change merged S-box (S-box)−1

2 masks 78 XOR, 4 NOT, 32 MUX = 196 49 XOR = 86 50 XOR = 88
1 mask 58 XOR, 3 NOT, 24 MUX = 146 44 XOR = 77 45 XOR = 79

unmasked 38 XOR, 2 NOT, 16 MUX = 96 24 XOR = 42 25 XOR = 44

multipliers) and the use of NOR gates where appropriate to replace a combination of NAND
and XOR gates (minimizing the size for the 0.13-µ CMOS standard cell library[14] con-
sidered). The tables give the results for the masked Galois inverter and the basis change
(bit matrices) separately. Results are shown by number and type of logic operations, and
also by total “gates,” where the number refers to the equivalent number of NAND gates
(rounded to whole numbers), using our standard cell library. We use the equivalencies 1
XOR/XNOR = 7

4
NAND gates, 1 NOR = 1 NAND gate, 1 NOT = 3

4
NAND gate, and 1

MUX21I = 7
4

NAND gates [14].
Note that the additional resources needed to use different masks on input and output

are significant for the merged architecture, but not for dedicated encryption (or decryption)
only. There is little reason not to use the input mask for the output as well. In this case,
the size for the merged architecture where encryption and decryption share an inverter is
626 NAND equivalents, almost three times the size of the unmasked version (234). (For
encryption only, not merged, the S-box with a single mask for both input and output is 557
NAND equivalents, compared with 180 for unmasked; again masked is three times larger.)

However, if the current approach were used in an application where the loop of rounds
was “unrolled” (requiring enough room for at least 160 S-boxes), the masks could be re-used
from round to round, as discussed above. This would require passing along the extra bits
of pre-computed corrections between rounds. For one S-box, the total number of mask-term
bits would be 43, as compared to 8 bits for an input mask alone (to be used as output mask
also, or 16 bits for two different masks). These extra wires would replace 33 XORs and
12 NANDs in the inverter, and all of the mask basis change calculation, e.g. 40 XORs, 16
MUXs, and 2 NOTs for the merged S-box with two different masks, or for an S-box alone
with one mask, 20 XORs (no MUXs or NOTs). So re-using masks between rounds would give
a masked merged S-box of 506 NAND equivalents, rather than the 626 above. In addition
to this saving per S-box (after the first round), the MixCols operation on the mask block
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would also be eliminated (again, after the first round).
Direct comparison with Oswald et al.[9] is difficult at the level of optimization employed

here. Their terms of comparison are operations in GF(24), excluding addition; in their
Table 1 they list 9 multiplications, 2 squarings, and 2 multiplications by a constant (or
scalings). In those terms, the present approach is almost the same, except we require only
8 multiplications instead of 9. But each of the two squarings is followed by a scaling (same
constant), so our approach treats square-scale as a single operation, which we have optimized
down to 3 single-bit XORs, less than one of the 4-bit additions that are not counted there.
But while comparison is difficult in the lack of specifics, to the best of our knowledge ours
is the smallest masked S-box to date.

4 Conclusion

For some hardware implementations of AES, countermeasures against side-channel attacks
can be important. Here we give a method for masking the S-box (the rest of a round being
linear) that is secure, in that the distributions of all the masked operands are independent of
the distribution of the data. This masked S-box has been optimized for minimal chip area,
giving the smallest masked S-box of which we are aware.

The overhead for masking nearly triples the size of the S-box, from 234 gates to 626
gates for the merged version. In applications with sufficient resources to unroll the round
loop (where the compactness of the S-box allows more copies for a given area), some savings
may result from re-using the block mask between rounds. Then each S-box (after the first
round) would require only 506 gates, a little over twice the size of the unmasked version.
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Appendix: S-box Algorithm in Verilog

/* S-box & inverse with MASKING, using all normal bases */

/* based on compact S-box using Canright algorithm */

/* optimized using NOR gates and NAND gates */

/* multiply in GF(2^2), shared factors, using normal basis [Omega^2,Omega] */

module GF_MULS_2 ( A, B, Q );

input [2:0] A; /* shared factors include bit sum: sum hi lo */

input [2:0] B;

output [1:0] Q;

wire abcd, p, q;

assign abcd = ~(A[2] & B[2]); /* note: ~& syntax for NAND won’t compile */

assign p = (~(A[1] & B[1])) ^ abcd;

assign q = (~(A[0] & B[0])) ^ abcd;

assign Q = { p, q };

endmodule

/* multiply & scale by N in GF(2^2), shared factors, basis [Omega^2,Omega] */

module GF_MULS_SCL_2 ( A, B, Q );

input [2:0] A; /* shared factors include bit sum: sum hi lo */

input [2:0] B;

output [1:0] Q;

wire t, p, q;

assign t = ~(A[0] & B[0]); /* note: ~& syntax for NAND won’t compile */

assign p = (~(A[2] & B[2])) ^ t;

assign q = (~(A[1] & B[1])) ^ t;

assign Q = { p, q };

endmodule

/* sums for shared factors, 2-bit -> 3 */

module FAC_2 ( a, Q );

input [1:0] a;

output [2:0] Q;

wire sa;

assign sa = a[1] ^ a[0];

/* output is three 1-bit shared factors: sum hi lo */

assign Q = { sa, a };

endmodule

/* inverse in GF(2^4)/GF(2^2), using normal basis [alpha^8, alpha^2] */

module GF_INV_4 ( A, M, N, O, Q );
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input [3:0] A;

input [3:0] M; /* input mask */

input [3:0] N; /* output mask */

input [3:0] O; /* outer mask-switch terms, to save 2 XORs */

output [3:0] Q;

wire [1:0] a, b, m, n, c, e, d, p, q, an, mb, mn, dn, em, pm, qm;

wire [2:0] af, bf, mf, nf, ef, df; /* factors w/ bit sums */

assign a = A[3:2];

assign b = A[1:0];

assign m = M[3:2];

assign n = M[1:0];

FAC_2 afac(a, af);

FAC_2 bfac(b, bf);

FAC_2 mfac(m, mf);

assign nf = {O[1],n};

GF_MULS_2 anmul(af, nf, an);

GF_MULS_2 mbmul(mf, bf, mb);

GF_MULS_2 mnmul(mf, nf, mn);

/* optimize section below using NOR gates */

assign c = { /* note: ~| syntax for NOR won’t compile */

~(a[1] | b[1]) ^ (~(af[2] & bf[2])) ,

~(af[2] | bf[2]) ^ (~(a[0] & b[0])) }

^ an ^ mb ^ mn ;

/* end of NOR optimization */

assign e = { /* inverse masked by n (lo input mask) */

c[0] ^ n[0] ^ mf[2] ,

c[1] ^ m[1] ^ nf[2] };

FAC_2 efac(e, ef);

GF_MULS_2 qmul(ef, af, q);

GF_MULS_2 emmul(ef, mf, em);

/* NOTE: to maintain masking,

the output mask N must be added BEFORE p, q are added to other terms */

assign qm = N[1:0] ^ an ^ em ^ mn; /* mask terms for q (lo output) */

assign d = { /* switch masks: n -> m (hi input mask) */

c[0] ^ O[3] ,

e[0] ^ m[0] ^ n[0] };

FAC_2 dfac(d, df);

GF_MULS_2 pmul(df, bf, p);

GF_MULS_2 dnmul(df, nf, dn);

assign pm = N[3:2] ^ mb ^ dn ^ mn; /* mask terms for p (hi output) */

assign Q = { (pm ^ p), (qm ^ q) };

endmodule

/* multiply in GF(2^4)/GF(2^2), shared factors, basis [alpha^8, alpha^2] */
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module GF_MULS_4 ( A, B, Q );

input [8:0] A; /* shared factors include bit sums: sum hi lo */

input [8:0] B;

output [3:0] Q;

wire [1:0] ph, pl, p;

GF_MULS_SCL_2 summul( A[8:6], B[8:6], p);

GF_MULS_2 himul(A[5:3], B[5:3], ph);

GF_MULS_2 lomul(A[2:0], B[2:0], pl);

assign Q = { (ph ^ p), (pl ^ p) };

endmodule

/* sums for shared factors, 4-bit -> 9 */

module FAC_4 ( a, Q );

input [3:0] a;

output [8:0] Q;

wire [1:0] sa;

wire al, ah, aa;

assign sa = a[3:2] ^ a[1:0];

assign al = a[1] ^ a[0];

assign ah = a[3] ^ a[2];

assign aa = sa[1] ^ sa[0];

/* output is three 3-bit shared factors: sum hi lo */

assign Q = { aa, sa, ah, a[3:2], al, a[1:0] };

endmodule

/* inverse in GF(2^8)/GF(2^4), using normal basis [d^16, d] */

module GF_INV_8 ( A, M, N, Q );

input [7:0] A;

input [7:0] M; /* input mask */

input [7:0] N; /* output mask */

output [7:0] Q;

wire [3:0] a, b, m, n, o, c, d, e, p, q, m4, an, mb, mn, dn, em, pm, qm;

wire [8:0] af, bf, mf, nf, ef, df; /* factors w/ bit sums */

wire c1, c2, c3; /* for temp var */

assign a = A[7:4];

assign b = A[3:0];

assign m = M[7:4];

assign n = M[3:0];

assign o = m ^ n; /* to switch masks below; has useful bits */

FAC_4 afac(a, af);

FAC_4 bfac(b, bf);

FAC_4 mfac(m, mf);
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FAC_4 nfac(n, nf);

GF_MULS_4 anmul(af, nf, an);

GF_MULS_4 mbmul(mf, bf, mb);

GF_MULS_4 mnmul(mf, nf, mn);

/* optimize section below using NOR gates */

assign c1 = ~(af[5] & bf[5]);

assign c2 = ~(af[6] & bf[6]);

assign c3 = ~(af[8] & bf[8]);

assign c = { /* note: ~| syntax for NOR won’t compile */

(~(af[6] | bf[6]) ^ (~(a[3] & b[3]))) ^ c1 ^ c3 ,

(~(af[7] | bf[7]) ^ (~(a[2] & b[2]))) ^ c1 ^ c2 ,

(~(af[2] | bf[2]) ^ (~(a[1] & b[1]))) ^ c2 ^ c3 ,

(~(a[0] | b[0]) ^ (~(af[2] & bf[2]))) ^ (~(af[7] & bf[7])) ^ c2 }

^ an ^ mb ^ mn ;

/* end of NOR optimization */

assign m4 = { /* this is input mask for subfield */

mf[6] ^ nf[6] ,

mf[7] ^ nf[7] ,

mf[2] ^ nf[2] ,

o[0] };

GF_INV_4 dinv( c, m4, m, o, d); /* inverse masked by m (hi input mask) */

FAC_4 dfac(d, df);

GF_MULS_4 pmul(df, bf, p);

GF_MULS_4 dnmul(df, nf, dn);

assign pm = N[7:4] ^ mb ^ dn ^ mn; /* mask terms for p (hi output) */

assign e = d ^ o; /* switch masks: m -> n (lo input mask) */

FAC_4 efac(e, ef);

GF_MULS_4 qmul(ef, af, q);

GF_MULS_4 emmul(ef, mf, em);

assign qm = N[3:0] ^ an ^ em ^ mn; /* mask terms for q (lo output) */

assign Q = { (pm ^ p), (qm ^ q) };

endmodule

/* S-box basis change with MASKING, using all normal bases */

/* MUX21I is an inverting 2:1 multiplexor */

module MUX21I ( A, B, s, Q );

input A;

input B;

input s; /* selection switch */

output Q;

assign Q = ~ ( s ? A : B ); /* mock-up for FPGA implementation */

endmodule
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/* select and invert (NOT) byte, using MUX21I */

module SELECT_NOT_8 ( A, B, s, Q );

input [7:0] A;

input [7:0] B;

input s; /* selection switch */

output [7:0] Q;

MUX21I m7(A[7],B[7],s,Q[7]);

MUX21I m6(A[6],B[6],s,Q[6]);

MUX21I m5(A[5],B[5],s,Q[5]);

MUX21I m4(A[4],B[4],s,Q[4]);

MUX21I m3(A[3],B[3],s,Q[3]);

MUX21I m2(A[2],B[2],s,Q[2]);

MUX21I m1(A[1],B[1],s,Q[1]);

MUX21I m0(A[0],B[0],s,Q[0]);

endmodule

/* find either Sbox or its inverse in GF(2^8), by Canright Algorithm */

/* with MASKING: the input mask M and output mask N must be given */

module bSbox ( A, M, N, encrypt, Q );

input [7:0] A;

input [7:0] M;

input [7:0] N;

input encrypt; /* 1 for Sbox, 0 for inverse Sbox */

output [7:0] Q;

wire [7:0] B, C, D, E, F, G, H, V, W, X, Y, Z;

wire R1, R2, R3, R4, R5, R6, R7, R8, R9;

wire S1, S2, S3, S4, S5, S6, S7, S8, S9;

wire T1, T2, T3, T4, T5, T6, T7, T8, T9;

wire U1, U2, U3, U4, U5, U6, U7, U8, U9, U10;

/* change basis from GF(2^8) to GF(2^8)/GF(2^4)/GF(2^2) */

/* combine with bit inverse matrix multiply of Sbox */

assign R1 = A[7] ^ A[5] ;

assign R2 = A[7] ~^ A[4] ;

assign R3 = A[6] ^ A[0] ;

assign R4 = A[5] ~^ R3 ;

assign R5 = A[4] ^ R4 ;

assign R6 = A[3] ^ A[0] ;

assign R7 = A[2] ^ R1 ;

assign R8 = A[1] ^ R3 ;

assign R9 = A[3] ^ R8 ;

assign B[7] = R7 ~^ R8 ;

assign B[6] = R5 ;

assign B[5] = A[1] ^ R4 ;

assign B[4] = R1 ~^ R3 ;
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assign B[3] = A[1] ^ R2 ^ R6 ;

assign B[2] = ~ A[0] ;

assign B[1] = R4 ;

assign B[0] = A[2] ~^ R9 ;

assign Y[7] = R2 ;

assign Y[6] = A[4] ^ R8 ;

assign Y[5] = A[6] ^ A[4] ;

assign Y[4] = R9 ;

assign Y[3] = A[6] ~^ R2 ;

assign Y[2] = R7 ;

assign Y[1] = A[4] ^ R6 ;

assign Y[0] = A[1] ^ R5 ;

SELECT_NOT_8 sel_in( B, Y, encrypt, Z );

// convert masks also, but no additive constant for affine

assign S1 = M[7] ~^ M[5] ;

assign S2 = M[7] ~^ M[4] ;

assign S3 = M[6] ~^ M[0] ;

assign S4 = M[5] ^ S3 ;

assign S5 = M[4] ^ S4 ;

assign S6 = M[3] ^ M[0] ;

assign S7 = M[2] ^ S1 ;

assign S8 = M[1] ^ S3 ;

assign S9 = M[3] ^ S8 ;

assign E[7] = S7 ~^ S8 ;

assign E[6] = S5 ;

assign E[5] = M[1] ^ S4 ;

assign E[4] = S1 ~^ S3 ;

assign E[3] = M[1] ^ S2 ^ S6 ;

assign E[2] = ~ M[0] ;

assign E[1] = S4 ;

assign E[0] = M[2] ^ S9 ;

assign F[7] = S2 ;

assign F[6] = M[4] ^ S8 ;

assign F[5] = M[6] ~^ M[4] ;

assign F[4] = S9 ;

assign F[3] = M[6] ^ S2 ;

assign F[2] = S7 ;

assign F[1] = M[4] ~^ S6 ;

assign F[0] = M[1] ^ S5 ;

SELECT_NOT_8 sel_Min( E, F, encrypt, V );

assign T1 = N[7] ~^ N[5] ;

assign T2 = N[7] ~^ N[4] ;

assign T3 = N[6] ~^ N[0] ;
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assign T4 = N[5] ^ T3 ;

assign T5 = N[4] ^ T4 ;

assign T6 = N[3] ^ N[0] ;

assign T7 = N[2] ^ T1 ;

assign T8 = N[1] ^ T3 ;

assign T9 = N[3] ^ T8 ;

assign G[7] = T7 ~^ T8 ;

assign G[6] = T5 ;

assign G[5] = N[1] ^ T4 ;

assign G[4] = T1 ~^ T3 ;

assign G[3] = N[1] ^ T2 ^ T6 ;

assign G[2] = ~ N[0] ;

assign G[1] = T4 ;

assign G[0] = N[2] ^ T9 ;

assign H[7] = T2 ;

assign H[6] = N[4] ^ T8 ;

assign H[5] = N[6] ~^ N[4] ;

assign H[4] = T9 ;

assign H[3] = N[6] ^ T2 ;

assign H[2] = T7 ;

assign H[1] = N[4] ~^ T6 ;

assign H[0] = N[1] ^ T5 ;

SELECT_NOT_8 sel_Mout( H, G, encrypt, W );

GF_INV_8 inv( Z, V, W, C );

/* change basis back from GF(2^8)/GF(2^4)/GF(2^2) to GF(2^8) */

/* combine with matrix multiply of Sbox */

assign U1 = C[7] ^ C[3] ;

assign U2 = C[6] ^ C[4] ;

assign U3 = C[6] ^ C[0] ;

assign U4 = C[5] ~^ C[3] ;

assign U5 = C[5] ~^ U1 ;

assign U6 = C[5] ~^ C[1] ;

assign U7 = C[4] ~^ U6 ;

assign U8 = C[2] ^ U4 ;

assign U9 = C[1] ^ U2 ;

assign U10 = U3 ^ U5 ;

assign D[7] = U4 ;

assign D[6] = U1 ;

assign D[5] = U3 ;

assign D[4] = U5 ;

assign D[3] = U2 ^ U5 ;

assign D[2] = U3 ^ U8 ;

assign D[1] = U7 ;
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assign D[0] = U9 ;

assign X[7] = C[4] ~^ C[1] ;

assign X[6] = C[1] ^ U10 ;

assign X[5] = C[2] ^ U10 ;

assign X[4] = C[6] ~^ C[1] ;

assign X[3] = U8 ^ U9 ;

assign X[2] = C[7] ~^ U7 ;

assign X[1] = U6 ;

assign X[0] = ~ C[2] ;

SELECT_NOT_8 sel_out( D, X, encrypt, Q );

endmodule

/* test program: put Sbox output into register */

/* with MASKING: the input mask M and output mask N must be given */

module Sbox_m ( A, M, N, S, Si, CLK );

input [7:0] A;

input [7:0] M;

input [7:0] N;

output [7:0] S;

output [7:0] Si;

input CLK /* synthesis syn_noclockbuf=1 */ ;

reg [7:0] S;

reg [7:0] Si;

wire [7:0] s;

wire [7:0] si;

bSbox sbe(A, M, N, 1, s);

bSbox sbd(A, M, N, 0, si);

always @ (posedge CLK) begin

S <= s;

Si <= si;

end

endmodule
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